ISSN:0975-9646

Saurav Mallik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011, 1933-1939

An Approach to Improve the Security of Online
System using Crypto System

Saurav Mallik, Sutapa Majee,Arun Kanti Manna,Md. Headayetullah
Department of Computer Science and Engineering, Dr. B. C. Roy Engineering College, Durgapur, India

Abstract—Presently, the chief problem facing Internet banking
is the security of online transactions. That’s why, 3-tier security
is used to make the transaction more secure. Among the 3-Tier
Security layers, Application layer security comes first as it is the
topmost layer in OSI model. The visitors always assume about
the security and safety of these transactions, and so they are
steadily lose their trust on the bank due to increase of various
online Internet attacks. Now, it is trying to design an approach
to enhance the Application Layer Security in case of online
security application. It helps to make a latest idea about online
banking transactions as well as increases trust and security over
the existing theory, by challenge-response mutual authentication
process. This paper says about possible preventions of Password
Guessing by padding a random string in the different position of
the password depending upon UTC (Coordinated Universal
Time) time and Nearest Prime Number Concept. We also propose
an algorithm on Multiple Key Block Cipher Symmetric
Encryption (MKBCSE) algorithm which is advantageous in many
respect than other existing symmetric key encryption technique.
Different Key generation and NOB variable have major
important role here, because the key here changes after a
certain number of bits (NOB). Key comprises of various
components and is a combination of various server and client
related information. This makes it hard for the attacker to guess
the key.

Keyword:-Random string Padding, Multiple key symmetric
encryption with block cipher, NOB.

l. INTRODUCTION

In today’s world of increasingly sophisticated cyber

attacks, application-layer security threats are top of mind with
many network administrators, security consultants. The loss
of network and application access can cost enterprises dearly
in lost revenue and employee productivity. Today’s security
infrastructure must address the new wave of application-layer
security attacks and application abuse.
Presently, the chief problem facing Online banking is the
security of online transactions. That’s why, 3-tier
security[1,4,5] is used to make the transaction more secure.
Among the 3-Tier Security layers, Application layer security
comes first as it is the topmost layer in OSI model. The
visitors always assume about the security and safety of these
transactions, and so they are steadily lose their trust on the
bank due to increase of various online Internet attacks. There
are mainly two types of attacks [3]: local attacks (example:
Trojan-horse), remote attacks (example: password guessing,
dictionary search, phishing, pharming etc.). Now, it is trying
to design an approach to enhance the Application Layer
Security in case of online security application. It helps to
make a latest idea about online banking transactions as well
as increases trust and security over the existing theory, by
challenge-response mutual authentication process.

In Internet Banking[1,2], a hash-encrypted password is
not entirely secure. An attacker can hack hashed password
when transferring it from client to server. So, in this paper, as
an extra protection, we pad a random string (given by user)
in different position of hashed string. This padding position
is calculated depending on UTC time and Nearest prime
number. So, it is difficult guess the password. We also
propose an algorithm of Multiple Key Block Cipher
Symmetric Encryption (MKBCSE), where, after a particular
bit number (NOB), different keys are generated used for
encryption and decryption. So, here key is more secure than
other existing encryption technique. Key is made of
server[2,3] and client related information. This makes it hard
for the attacker to guess the key. The rest of the paper is well
thought out as follows: Section Il describes the previous
research review. Section Ill depicts proposed possible
preventions of password guessing. Section IV discusses
experimental results and benefits of this proposed work.
Finally conclusions are summed up in Section V.

Il. LITERATURE REVIEW

A. Existing salt value padding technique:-

In cryptography[4], a salt consists of random bits[5] that
are used as one of the inputs to a one-way function. The other
input is usually a password or passphrase. The output of the
one-way function can be stored rather than the password, and
still be used to authenticate users. A salt can also be
combined with a password by akey derivation function to
generate a key for use with a cipher or other cryptographic
algorithm.

In a one-way function, salt value is always padded at the
end of the password. That means position of padding is fixed.
And also size of salt value is also fixed. So, it is possible to
guess the salt size and can get the original password.

B. Limitations of existing Symmetric key algorithms:-

The existing symmetric key encryption algorithms(like
DES, 3DES, AES, Blowfish) has some shortcomings.
A brief note on the operational mechanism and overheads
posed by some popular symmetric key algorithms are
discussed below:-

B.1 DES/3DES:

DES[3] applies a symmetric 56-bit key to each 64-bit
block of data. The process can run in several modes and
involves 16 rounds of operations. DES is breakable as the key
size is too less. Hence Triple DES (3DES)[7] an
Enhancement of DES emerged as a stronger method. Triple
DES encrypts the data three times and uses a different key for

1933

Saurav Mallik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011, 1933-1939

at least one of the three passes for giving a cumulative key of
size 112-168 bits. If we consider a triple length key to consist
of three 56-bit keys K1, K2, K3 then encryption is as
following order :- encryption with K1, decryption with K2,
encryption with K3. Whereas, decryption is the reverse
process of encryption, so the decryption of the cipher text
will be as follows:- decryption with K3, encryption with K2,
decryption with K1. The computational overhead at the
sender and receiver ends, are as high as 3DES that involves
three times the operations of normal DES, with each DES
contributing 16 rounds of operation [4]. Further the
increasing key size increases the process run time
complexity. Moreover the keys are of fixed size and do not
change with sessions, they has to be changed periodically
between the parties for achieving more message
confidentiality.

B.2 AES:

An Advanced Encryption Standard (AES)[6] has basically
three different configurations with respect to the number of
rounds and key sizes. It has 10 rounds for 128-bit keys, 12
rounds for 192-bit keys, and 14 rounds for 256-bit keys. By
2006, the best known attacks were on 7 rounds for 128-bit
keys, 8 rounds for 192-bit keys, and 9 rounds for 256-bit keys
[6]. It is worth mentioning here that any increase in the
number of iterations or rounds and key size is a burden for
both the sender and the receiver. Even the key is fixed and it
doesn’t change with the respective session. So, using a single
key for long time decreases the message confidentiality.

B.3 Blowfish Encryption:-

Blowfish encrypts data in 8-byte blocks. The algorithm
consists of two parts: a key-expansion part and a data-
encryption part. Key expansion converts a variable-length
key of at most 56 bytes (448 bits) into several sub key arrays
totaling 4168 bytes. Blowfish has 16 rounds. Each round
consists of a key dependent permutation, and a key and data-
dependent substitution. All operations are XORs and
additions on 32-bit words [4]. Blowfish Encryption is
modified version of DES with simplified operations like
XORs and additions. The run time complexity of Blowfish is
much lesser than that of DES and AES, using the same
concept, but suffers the same problem as DES. Session key
uses multiple keys for ciphering and deciphering the message
for a period of time. In session key mechanism after a
particular time t, both the sender and receiver will change the
keys which are being used to cipher and decipher. The
problem with this technique is that if there is lack of
synchronization between the sender and receiver, one end
might have changed the key whereas other might be using the
previous key. But instead of using a time stamp to change a
key, we consider here the change of key after encrypting
some number of bits (i.e. some piece of message) and
similarly on receiver side it changes the key after decrypting
same number of bits. We emphasize here that this novel idea
is more suitable for this process of encryption or decryption
which has been justified through experimental results.

I11. PROPOSED POSSIBLE PREVENTIONS OF
PASSWORD GUESSING
There are three possible ideas about preventions of
password guessing which are given below:-
e Padding salt value,
e Padding a random string in different positions of
hashed message string,
o Different Keys generation.

A. Proposed Conceptual Algorithm of Padding salt value
and Random String:-

Usemname pes ‘mdom |
% |sting(N1
v I(addingll!' P, —ppasdediash— it character of
L | in differert position 7
Mo bi0S vt UTCHM) ading i i, Sabove random
5 fiost of string size('st])
paddedhash (% &

encryphion

{decrypt- Efide)
by server)

Figure 1:Challenged-based Password Verification Technique

Now, our first target is to design an algorithm on
challenged based password verification technique(in Figure
1), where we are trying to pad a random string which will be
padded in different position of hashed string(from the Figure
1). This padding position totally depends on UTC time and
Nearest Prime number concept.

o0 Algorithm part “*’(from Figurel):-

Stepl:- Taking a random string (N1) from user with a
variable length. Find the size of that string as ‘size(N1)’;

Step2:-Find UTC time (with hour ,minute, second) and UTC
date (with date, month, year). Then add some extra time
value with UTC time. After that calculate a time value(T1)
and a date value(D1), where

T1 = ((minute+12)*60+(second+14))>>3
D1=((month+6)*30+(day+9));
Then find nearest prime number of (T1) referred as
‘PrimeT1’ and also find nearest prime number of (D1)
referred as ‘PrimeD1’.
Step 3:- Calculate the position of padding :-

Pad_position=(27"™P + 3PrMeTo4 sjze(hashstring+1);

1934

Saurav Mallik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011, 1933-1939

o0 Algorithm part “*** (from Figure 1):-

Step:- Find (PrimeT1/size(N1)); Then add extra value in it
and find corresponding ASCII character (refer as “st1’).

B. Multiple key block cipher symmetric encryption
(mkbcse) algorithm:-

On the basis of the above mentioned (in Section 11.B.)
shortcomings, of the popular crypto algorithms, we propose
“Multiple Key Block Cipher Symmetric Encryption”
(MKBCSE) algorithm which overcome those. Our algorithm
is under symmetric key block ciphering and uses a 128 bits
key. NOB(number of bits) is a variable, which will decide,
after how many number of bits the key should change. We
consider 128 bits key size and n bits NOB (where
7<=n<=128). Here, 128<=NOB<=(2"-1) and NOB must be
multiples of 128. The key and NOB is known to both the
sender and receiver via exchange of an initial message. For
message integrity, we will use message authentication code
(MAC) using MD5. “bit_count’ is used as a variable to count
the number of bits to be encrypted and decrypted. The
bit_count will be compared to NOB. If it is equal to the NOB,
a new key will be generated.

B.1. Key Generation Algorithm:-

We assume that S is a server,N; presents each node in the
network. The key and NOB will be generated at the server
end and then exchange between server and the client. This
process consists of generating MIN; (client node related),
MIN; (server related), SRMPy; (based on screen resolution
and mouse position) and T; (a time component).Based on
SRMPyi and T; , a random number of 128 bits, R; is
generated. The MIN; and MINs make use of MAC address, IP
address, host name of server S and node N; respectively. So,
key (Figure:2) is a combination of various server and client
related information. This makes it hard for attacker to guess
the key.

Client PC

KEY Generation Technique

Server

get cument

calculate|

Figure 2:Key generation technique in MKBCSE

0 Steps are as follows:-
KeyGeneration (n)

[* acquiring Ni’s information */
1. Acquire node Ni’s MAC address (MACy;), IP address (IPy;), Host
Name (Ny;), Screen Resolution (SRy;),Mouse Position (MPy;).

/*generate MIN; of 128 bits*/
2. Generate MIN; variable by appending MACy; 1Py, Ny

3. If(MIN;<128 bits)
Pad ‘0’ in the MIN;;
else goto step 3.
4.1f(MIN;>128 bits)
take 128 bits from MSB side of MIN;.

[* acquiring server’s information */
5. Acquire Server MAC Address (MAC;), IP address (IPs),
ServerName (N).

6.Find current Date, Time from server when connecting N;

[*generating MIN; of 128 bits*/
7. Generate MIN; variable by appending MAC;, IPs, Ns.

8. If (MIN<128 bits)
Pad ‘0’ in MIN;
else goto step 8.
9.1f(MIN>128 hits)
take 128 bits from MSB side of MIN.

/*generate Ti of 128 bits*/
10. Find Ti by appending time, date components as string.

/* generate random number Ri */
11. Get 128 bits SRMPy; a variable by appending 64 bits SRy; with

64 bits MPy;
12. Ri=SRMPy; (XOR) T;. /* Here, Ri is 128 bits */

/* calculating n bits NOB variable from Ri */
13. NOB = last n-7 bits of Ri.

14. Append seven “0’s in to the LSB side of NOB;

/* Here, no. of bits in (NOB) = n bits*/
15. If (NOB<128) NOB=128; /*(128<=NOB<=2"-1)*/

/*MIN;s , MINT s are variables*/
16. MIN;s=MIN;(XOR)MINs;
17.MINT&=MIN;s(XOR)T;.
18. K; = MINT;s (XOR) Ri; /* generating key Ki*/
19. Dispatch key Ki and NOB to Ni; /* dispatch key */
20. END

} /*’n’is an agreed value between client and server*/

B.2. Encryption Algorithm:-

Encryption algorithm divides whole message into 120 bits
blocks and each block is appended by 8 bits message

1935

Saurav Mallik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011, 1933-1939

authentication code(MAC). Now,these 128 bits blocks are
encrypted by key. After every NOB bits of message, the key
is changed and encrypted by new key. This procedure is
repeated till end of message. The steps are as follows:

Encryption (Key K, NOB, PlainText)

{
1. Cipher_Text = null;
2.M=1*120 bits of PlainText;

[*pad‘0’at end of M, if M!=120 bits*/
3. bit_count = 0;

4.1f (M == null)
(goto step 12);

else (goto step 5);
5. 8 bits MAC=MD(NOB,M); /*MD=Message digest */
6. 128 bits(M+MAC)=append120 bits M with 8 bits MAC
7. 128 bits C=128 bits (M + MAC) (XOR) 128 bits key K
8. Cipher_Text =Append C with Cipher_Text;
9. bit_count = bit_count + 128;
10.M=next 120 bits of PlainText;

[*pad‘0’at end of M, if M 1=120 bits*/
11. If (bit_count != NOB)

goto step 4;
else { /*new key generation*/
Perform shift operation at K;
K=K + NOB;
K = K (XOR) NOB;
goto step 3;

12. END
3

B.3. Decryption Algorithm:-

Decryption algorithm divides whole cipher text into 128-bit
blocks which are decrypted by same multiple keys (which was used
for encryption). After every NOB bits, key will be changed and this
procedure is repeated till encrypted message ends. The steps are as
follows:

Decryption (Key K, NOB, CipherText)

1. Plain_Text = null;
2. C = First 128 bits of CipherText;
3. bit_count = 0;
4. 1f (C ==null)
(goto step 11);

else (goto step 5);
5. 128 bits (M + MAC) = C (XOR) 128 bits Key K.
6. Get 120 bits M, 8 bits MAC from 128 bits(M+MAC);

7. Append M with Plain_Text;
8. C = next 128 bits of CipherText ;
9. 8 bits MAC’ = MD (NOB, M);
10. If (MAC’ == MAC)
{ I*Message integrity verified*/
bit_count+ = 128;
If (bit_count != NOB)
goto step 4;
else { /*new key generation*/
Perform shift operation at k;
K=K+ NOB;
K = K (XOR) NOB;
goto step 3;

}
else Take proper action; /*Message not integrated*/
11. END

}

IV. EXPERIMENTS, RESULTS AND BENEFITS
We have used C# language in domain of ASP.NET 3.5 as a
coding standard. To perform the simulation, we have used
desktop with Windows XP sp2, Visual Studio 2008, Intel
Dual Core 2.53 GHz processor and 2 GB RAM.

IV.A. Experiment 1:-

We have implemented our 1% algorithm, i.e. padding a
random string in different position of the hashed string in the
figure. This padding position depends on UTC time and
Nearest Prime number. The snapshots of outputs are given in
Figures 3 & 4.

o

{ " filey!}/G:/edu qua/EncryptDycrypt final - Copy final/Test/bin/Release/Test EXE

Enter the username to generate encrypted string: saurav

Enter the PIN to generate enceypted string: G1A31987
hashidcHDS = HOJAPSRUhs2IeFdedl¥0IulcLognlZgd

Enter a random string with length 1 to 9 @ ghoghh

pandstring size: 6

fcurrentDateline: B7-A5-2011 15:34:12

calculated no from UIC tine: 348

rine near time calculation: 349

calculated no from UTC date: 346

pine near date calculation & 347

pandon string padding position : 31

paddedhash steing iz : MOIAPSRUhs2leFde3L¥0IulcLognlZygheghhd
hinds_paddedhash in 1st position: {MO3APSRUhs2IeBJedlL¥0lullcLognlZggheyhh?

Encrypted steing: UIINIMTAgrRNhHNhpke hnzydR2u3qpin2 iAScxoagplldqolkgtiNdAu==
Hit a key to get the decrypted phrase..

DecryptedString t {MOIAPSRUhs21eFde LY 0Tullc LognZggheghhd

Ileand stringsize conputed by server is: 6

orinial hash without random string padding: MOIAPSRUs2eFdedL¥0IulcLogniZy?
database ide in encrypted form @ eOTJdhtrab¥cB@ITQRkuty==

database stoved original value :sauvav A1A31987

conputed hashlalue : HO3APSRUs2 leFe3L0TulcLoqnlZg?

hashidcHDS comparizon @ True

Figure 3: Random string padding

1936

Saurav Mallik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011, 1933-1939

1 fie)16:edu quaEncrypDycypt ina -Copy nalTestinRelzseTestEXE BIEr== it file:1C: Documents and Setingslsujaya-parthalDesktoplbembse - calculate encryptio

Enter the username to generate enc1ypted string: saurav
ElEnter the PIN to generate encrypted string: BiB
hashideMDs @ 9EjtalFO+UBPRhRAPOCBCInR
ElEnter a landnn steing vith length 1 to 9 : gjyjyjky
pandstring size: 8
currentDateline: @7-@5-2011 15:35:57
calculated no from UTC time: 361
prine near time calculation: 361
calculated no from UTC date: 346
prime near date calculation : 347
pandon string paddlng pogltlnn HYS
+ 9EjtalPyjgigikg0+UBPEhRAPOCECINR
hinds_pa n 1°t position: n9EjtalFyjyjyjkg0+UBPRhRAPOCBCINR
Encrypted tllng Brvdxd5jelujlolz unhkeﬂ3JKl981/ﬂFkH1PhH3quchH nZR5xQ==

]+S)&‘-GE\xOFuinfuiwneuiwﬁ,FnuinFnFuinfnﬁ,fiuniFnuifunFﬁ‘e,l-leniuneuunenuﬁ,iwnenl
pefuinuTalennimef iuneffalrinvenfnuinfudf venuefnfuinuiZndrrenneonrejn? -Tenenue
mrvenina?
ciphertext string o UPZTGeUb+ R OCR UZPY'n HEC TR ULCH nb AR BS0G TRY
TS e GRMOfuinfuduneu v, Fnuinfnfuinfndd, fiunifnuifunf & weniwnewunenudd, Junen
pefuinuTnlennimef ineffalrinvenfnuinfudf venuefnfuinuilndrurenneonrejn? -Tenenue
nrveninbe?e jrujenndsnds) Te
ciphertext string ¢ UPZTCHUh <R OCRUZPA n B LYOTR UYCH nRADRBSOGIRYS
152 GE\wOFuinfuduneuivdd, Enuinfnfuinfndd, iunifnuifunf & weniwewunenudd, lunen
pefuinuMnl ruivnef iunefhedrinveufnuinfudf renuefnfuinyilnfewrenneunzejn! -fenenue
neveninbe?c jujenndsnds) - TesEnfndsfndsf Mele
no of hits needs already encrypted 150
Vit et Yy s °t1'1ng 0448
ciphertext string UP*ZTGeUh+<R [bOCR UZP4n+4ECCHOTR VYK nBORB0G IRY
TeS 3 heGBSxOFuinfuiuneu v, Enuinfnfuingndd, Fiunifnuifunf &, endunewmenudd, iunen
) pefuinuTalennimef iuneffalrinvenfnuinfudf venuefnfuinuiZndrrenneonrejn? -Tenenue
Figure 4:Random string padding prueunbe?cjrwjenndsnds) - TesEafndstndst M cEnds hfdskd3ped”

It is difficult for attacker to predict the padding position of HIEIEsEIEAEIE S SIRE RS

random string as that position is calculated depending on [[EINIEIEARETRON EIRITCE 2@32

Hit a key to get the decrypted phea
DecryptedString H n?EJtangJngJkgO+UBPEhRﬂPOcBC3nR

xand otllng ize computed hy server is: §
h vithout »andom string padding: 9EjtalPO+UBPBhRAPOCBCInR
c in enc1ypted forn : e0TJdhtrab¥cBBITQRkuu==
saurav 1031987
9EJta1F0+UBPBhRﬂPOcBC3nH
hashidcHDs comparison : True

nearest prime number and UTC time. o of bits needs almdy encrypted
Final ciphertext string ¢ UPTTGEUR+RU TR UZ4 n f4ECTHOTR YO nf8
IV.B. Experiment 2:- [¥Bs 06 149K 1S b BOFuinfuiuneudud, inuinfnfuinfnd iunifnuifunf B, venioneuune

ot dunenuefuinunl enuiunef iunef hedeinuenfnuinfulf renuefnfuinuiZadrurenniunee;

We have implemented our algorithm and get different ! Tenenvenrveninbec rujerndsnds) - TesnbndsfndsF e ndsf dska3pe4”

encryption time values for encrypting different size of
plaintext. Those time data sets are given in table 1.

Figure 5 & 6 depict the snapshots of output of time taken for
MKBCSE encryption of data of different sizes.

Figure 6: Time taken for MKBCSE data Encryption

Above values are plotted in a graph (in Figure 7) and we

Table 1: Time taken for MKBCSE encryption calculate an approximate encryption rate value.
Data(bit) of different sizes MKBCSE(;in”cirsye[ét)lon Times -
g 0 T o —1
32 182.1224 OMNRNS, esEiia
96 182.2997 !
336 182.8862 |
640 185.9429 eon
944 187.8948 Ao
1280 188.9976 § Ll
1600 189.6899 B
1920 190.0884 g o
1992 190.2382 B
2032 190.5315 8 ol
. .) g
ot fle 1 Documents and SefingfsujageparthaDeskioplbemlse - calculat encrypi i wl
u i
fnter the Plaintext to generate enceypted string: 5 il
asthjhesh i
WA Key strings B30B4uDy!B5ah "
tine elaped upto get hey:149.2619 4l
Ciphertext string...vunt b QRTREATC 4910542
no of hits needs already encrypted:%6 i : , : i
U e ey stedng, 0 0 10 1500 2000 20
total tine elaped for encryption:182,2097 , ‘
Tutal no of bits needs to be encrypted:%% size ofthe plantext ->
fo of hits needs already encn‘ypted Figure 7:Encrypting times for different plaintext size

final ciphertert string....vvvvnt

Then we compare it with DES, 3DES and AES. The time

Figure 5: Time taken for MKBCSE data Encryption taken for encryption of data are given in Table 2.

1937

Saurav Mallik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011, 1933-1939

Table 2:Comparative study with other existing symmetric
encryption algorithm

Encryption
Algorithm Time
(second/Kilobit)
DES(56 bit key) 0.296957406
3DES(56bit three key) 0.765329835
AES(128 bit key) 0.264974528
Blowfish(128 bit key) 0.204341515
Block Cipher Multiple key
Symmetric Encryption (128 bit 0.177459598
key)
Proposed MKSEBC(128 bit key) 0'17273.3488
(approximate)

So, it is clear that the time required to encrypt 1Kbit data
taken by MKBCSE algorithm is lesser than the existing
symmetric key algorithms. Figure 8 & Figure 9 depicts the
snapshots for ~ MKBCSE Encryption and Decryption

respectively.
ok
ntee the Flaintet o generate encoypted stedng:

mmummmMMthMMMﬁhH Rk bokdhghas i has

jOR it

e J8Y SERDDG,

1000011 eyt ion stavts/ /0001
(ofal no of hits needs to be encrupted:f4d

1 et - et Pl

RN

e B0 odlent

.m: i EnSuCRER Pl
% emoenSuRER? BTt
18 okEnSuTRER P Lol

T

1ot bey - ife
BRTLYS omndenSuRERTPhelRBu U fouh M58

1mmmmmmmwmmmmmmwmmm

o

[
(G 2o SR

1
(et
piEinSuskdbghas abd)i
ettt BN

plEinfuckidbasjabdDiasly LK

lutal no of hits need mmw il
mﬁﬂemtmmwmmnem

inal ciphentert string.,,..t NCPS ook enSulRERRbloRRSuNCIL Bt)
HWWM%MM&QMM$h i

Figure 8: Encryption with MKBCSE

it
Jids]
5 10

1 fle e ubehse - checkTestbin Reease Test EAE ‘ﬂé

final ciphertext string.....: BRT[78TcanuAJenSuZREH?PN(ln"NauEu[HUC"UT“FD.Hi‘ uBQ i
(7861 modEanSush jhjkas jabd [as kb 1K
eceupt ion stal'ts
........ key o 136BA1:07 147#4E
128
vernnd SaRkhjS KKdjb

cipher_e <256

plaintext: sabkjhjs khkdjhkashkahskbaghsh

hitcount 256

cipher e 1384

plaintext: sabkjhjs jkhkdjbkashkahskbajkshkashd jhakjshd;

hitcount 384

cipher e 512

plaintext: sahkjhjs jkhkdjhkashkahskbajhshjkashd jhak jshd jshakhsajkhkjh
hitcount:512

JHH=———=-—next key : 118
|:1phel' L]
e + sahkjhjs jkhkdjhkashkahskbaghshjkashd jhakjshd jshakghsajkhdkjhak]

...... + sahkjhjs jkhkdjhashkahskbahshjkashd jhakjshd jshakhsajkhk jhak]
(hykas jahdhas kb Y

Figure 9: Decryption with MKBCSE
0 Advantages of the MKBCSE algorithm: -

1. Encryption time of MKBCSE is less than existing DES,
3DES, AES, Blowfish, Block Cipher Multiple key
Symmetric Encryption.

2. Due to change of keys after random bits, it is very hard to
perform cryptanalysis to deduce the secret keys.

3. Due to 128-bit key and n-bit NOB, cipher becomes more
secure. As a total (2'?® +2” number of permutations are
possible where 128 >= n>=7. So, brute force attack is much
time taking, nearly 1.079x1028 year when n=7;

4. No need of key exchange. So it reduces network traffic.

5. It involves few XORs, SHIFTs, additions, comparisons and
appends operations. So, it works faster.

V. CONCLUSION

In this paper, it is structured to describe about possible
preventions of password guessing & brute-force attack by
padding a random string in the different position of the
password. The proposed MKBCSE key generation,
encryption and decryption algorithms are efficient because
they are simple and easily implementable. The algorithm
achieves less encryption time than existing DES, 3DES,
AES, Blowfish, Block Cipher Multiple key Symmetric
Encryption, which has been justified in the previous section.
This paper presents a new way of using multiple keys concept
without increasing message overhead. Instead of developing a
complex algorithm by involving complex & time taking
operations, this paper emphasizes to think about logically
complex algorithm with simple operations. More
modification in experimental section of this logic will be the
future work of this paper.

1938

Saurav Mallik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011, 1933-1939

ACKNOWLEDGMENT

We want to thank our parents and supervisor Professor
Md. Headayetullah for their needful encouragement to this
work.

REFERENCES

[1] Hole, K.J., Moen, V., Tjgstheim, T (2006). Case study: Online banking
security. IEEE Security & Privacy 4(2), 14-20.

[2] Hole, K.J.: Tjastheim, T., Moen, V., Netland, L., Espelid, Y., Klingsheim,
and A.N.: Next generation internet banking in Norway, submitted to
IEEE Security & Privacy, 2007.

[3] FIPS Publication 46-3, “Data Encryption Standard (DES)” ,U.S.
DoC/NIST, October 25, 1999.

[4] B. Schneier, Applied Cryptography, John Wiley & Sons, New York,
1994.

[5] Saurav Mallik, Sutapa Majee, Md. Headayetullah, “Proposed Novel
Conceptual 3-Tier Security Model for Internet Banking System”,
ICMLC 2011, Vol. 4, page:250-254, Singapore.

[6] FIPS Publication 197, “Advanced Encryption Standard (AES).” U.S.
DoC/NIST, November 26, 2001.

[7] Candid American National Standard for Financial Services X9.52- 1998,
“Triple Data Encryption Algorithm Modes of Operation.” American
Bankers Association, Washington, D.C., July 29, 1998.

AUTHORS

Saurav Mallik is M.Tech student of Dr. B. C. Roy Engineering
m College in Computer Science and Engineering under West Bengal
g University of Technology, India.

Sutapa Majee is M.Tech student of Dr. B. C. Roy Engineering
College in Computer Science and Engineering under West Bengal
University of Technology, India.

3

Arun Kanti Manna is M.Tech student of Dr. B. C. Roy
Engineering College in Computer Science and Engineering under
West Bengal University of Technology, India.

Md.Headayetullah is an Assistant Professor of department of
Computer Science and Engineering and Information Technology of
Dr. B.C Roy Engineering College, Durgapur. He has submitted his
PhD Thesis in the department of Computer Science and Engineering.
He has more than 6 Intern national publications in Reputed Journal.
He guided so many students in PG Level. Professor Headayetullah is
working as reviewer of so many journals and books. Professor,
Headayetullah is the members of IAENG and IACSIT respectively.

1939

